1,053 research outputs found

    Microwave millisecond spike emission and its associated phenomena during the impulsive phase of large flares

    Get PDF
    A tentative model is proposed to account for some features of the microwave millisecond spike emission and its links with the physical processes of associated phenomena during the impulsive phase of large flares by comparing the optical, radio, and X-ray observations on May 16, 1981 to those on October 12, 1981

    Dexterity analysis and robot hand design

    Get PDF
    Understanding about a dexterous robot hand's motion ranges is important to the precision grasping and precision manipulation. A planar robot hand is studied for object orientation, including ranges of motion, measures with respect to the palm, position reaching of a point in the grasped object, and rotation of the object about the reference point. The rotational dexterity index and dexterity chart are introduced and an analysis procedure is developed for calculating these quantities. A design procedure for determining the hand kinematic parameters based on a desired partial or complete dexterity chart is also developed. These procedures have been tested in detail for a planar robot hand with two 2- or 3-link fingers. The derived results are shown to be useful to performance evaluation, kinematic parameter design, and grasping motion planning for a planar robot hand

    A platform for dynamic organization of agents in agent-based systems

    Full text link
    In most agent-based systems, different middle agents are employed to increase their flexibility. However, there are still three issues remain unsolved. In centralized architecture with single middle agent, the middle agent itself is a bottleneck and suffers from single point failure; middle agents in distributed architecture lack capability of dynamic organization of agents; The reliability is not strong because of the single point failure and lack of effective architecture. We introduce a platform with ring architectural model to solve all above problems. In the platform, multiple middle agents are dynamically supported for solving the first problem. For solving the second problem, middle agents dynamically manage the registration and cancellation of service provider agents and application teams, each of which includes a set of closely interacting requester agents to complete an independent task. Redundancy middle agent technique is proposed for solving the third problem. All middle agents are of the feature of proliferation and self-cancellation according to the sensory inputs from their environment. For organizing the middle agents effectively, a ring architectural model is proposed. We demonstrate the applicability of the platform by its application and present experimental evidence that the platform is flexible and robust. <br /

    An agent-based framework for petroleum information services from distributed heterogeneous data resources

    Full text link
    For making good decisions in the area of petroleum production, it is becoming a big problem how to timely gather sufficient and correct information, which may be stored in databases, data files, or on the World Wide Web. In this paper, Gaia methodology and Open Agent Architecture were employed to contribute a framework to solve above problem. The framework consists of three levels, namely, role mode, agent type, and agent instance. The model with five roles is analyzed. Four agent types are designed Six agent instances are developed for constructing the system of petroleum information services. The experimental results show that all agents in the system can work cooperatively to organize and retrieve relevant petroleum information. The successful implementation of the framework shows that agent-based technology can significantly facilitate the construction of complex systems in distributed heterogeneous data resource environment.<br /

    What Can We Do Before Defibrillation?

    Get PDF

    Data-Driven Robust Control of Unknown MIMO Nonlinear System Subject to Input Saturations and Disturbances

    Get PDF
    This paper presented a new data-driven robust control scheme for unknown nonlinear systems in the presence of input saturation and external disturbances. According to the input and output data of the nonlinear system, a recurrent neural network (RNN) data-driven model is established to reconstruct the dynamics of the nonlinear system. An adaptive output-feedback controller is developed to approximate the unknown disturbances and a novel input saturation compensation method is used to attenuate the effect of the input saturation. Under the proposed adaptive control scheme, the uniformly ultimately bounded convergence of all the signals of the closed-loop nonlinear system is guaranteed via Lyapunov analysis. The simulation results are given to show the effectiveness of the proposed data-driven robust controller

    A scalable and robust framework for agent-based heterogeneous database operation

    Full text link
    How to operate database efficiently and unfailingly in agent-based heterogeneous data source environment is becoming a big problem. In this paper, we contribute a framework and develop a couple of agent-oriented matchmakers with logical ring organization structure to match task agents\u27 requests with middleware agents of databases. The middleware agent is a wrapper of a specific database and is run on the same server with the database management system. The matchmaker is of the features of proliferation and self-cancellation according to the sensory input from its environment. The ring-based coordination mechanism of matchmakers is designed. Two kinds of matchmakers, namely, host and duplicate, are designed for improving the scalability and robustness of agent-based system. The middleware agents are improved for satisfying the framework. We demonstrate the potentials of the framework by case study and present theoretical and empirical evidence that our approach is scalable and robust.<br /

    Study of the cytological features of bone marrow mesenchymal stem cells from patients with neuromyelitis optica.

    Get PDF
    Neuromyelitis optica (NMO) is a refractory autoimmune inflammatory disease of the central nervous system without an effective cure. Autologous bone marrow‑derived mesenchymal stem cells (BM‑MSCs) are considered to be promising therapeutic agents for this disease due to their potential regenerative, immune regulatory and neurotrophic effects. However, little is known about the cytological features of BM‑MSCs from patients with NMO, which may influence any therapeutic effects. The present study aimed to compare the proliferation, differentiation and senescence of BM‑MSCs from patients with NMO with that of age‑ and sex‑matched healthy subjects. It was revealed that there were no significant differences in terms of cell morphology or differentiation capacities in the BM‑MSCs from the patients with NMO. However, in comparison with healthy controls, BM‑MSCs derived from the Patients with NMO exhibited a decreased proliferation rate, in addition to a decreased expression of several cell cycle‑promoting and proliferation‑associated genes. Furthermore, the cell death rate increased in BM‑MSCs from patients under normal culture conditions and an assessment of the gene expression profile further confirmed that the BM‑MSCs from patients with NMO were more vulnerable to senescence. Platelet‑derived growth factor (PDGF), as a major mitotic stimulatory factor for MSCs and a potent therapeutic cytokine in demyelinating disease, was able to overcome the decreased proliferation rate and increased senescence defects in BM‑MSCs from the patients with NMO. Taken together, the results from the present study have enabled the proposition of the possibility of combining the application of autologous BM‑MSCs and PDGF for refractory and severe patients with NMO in order to elicit improved therapeutic effects, or, at the least, to include PDGF as a necessary and standard growth factor in the current in vitro formula for the culture of NMO patient‑derived BM‑MSCs

    Brain Injury Differences in Frontal Impact Crash Using Different Simulation Strategies

    Get PDF
    In the real world crashes, brain injury is one of the leading causes of deaths. Using isolated human head finite element (FE) model to study the brain injury patterns and metrics has been a simplified methodology widely adopted, since it costs significantly lower computation resources than a whole human body model does. However, the degree of precision of this simplification remains questionable. This study compared these two kinds of methods: (1) using a whole human body model carried on the sled model and (2) using an isolated head model with prescribed head motions, to study the brain injury. The distribution of the von Mises stress (VMS), maximum principal strain (MPS), and cumulative strain damage measure (CSDM) was used to compare the two methods. The results showed that the VMS of brain mainly concentrated at the lower cerebrum and occipitotemporal region close to the cerebellum. The isolated head modelling strategy predicted higher levels of MPS and CSDM 5%, while the difference is small in CSDM 10% comparison. It suggests that isolated head model may not equivalently reflect the strain levels below the 10% compared to the whole human body model
    • …
    corecore